UTD-SRL: A Pipeline Architecture for Extracting Frame Semantic Structures

نویسندگان

  • Cosmin Adrian Bejan
  • Chris Hathaway
چکیده

This paper describes our system for the task of extracting frame semantic structures in SemEval–2007. The system architecture uses two types of learning models in each part of the task: Support Vector Machines (SVM) and Maximum Entropy (ME). Designed as a pipeline of classifiers, the semantic parsing system obtained competitive precision scores on the test data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracting Knowledge from Text with PIKES

In this demonstration we showcase PIKES, a Semantic Role Labeling (SRL)-powered approach for Knowledge Extraction. PIKES implements a rule-based strategy that reinterprets SRL output in light of other linguistic analyses, such as dependency parsing and co-reference resolution, thus properly capturing and formalizing in RDF important linguistic aspects such as argument nominalization, frame-fram...

متن کامل

On the reliability and inter-annotator agreement of human semantic MT evaluation via HMEANT

We present analyses showing that HMEANT is a reliable, accurate and fine-grained semantic frame based human MT evaluation metric with high inter-annotator agreement (IAA) and correlation with human adequacy judgments, despite only requiring a minimal training of about 15 minutes for lay annotators. Previous work shows that the IAA on the semantic role labeling (SRL) subtask within HMEANT is ove...

متن کامل

Exploiting Mutual Benefits between Syntax and Semantic Roles using Neural Network

We investigate mutual benefits between syntax and semantic roles using neural network models, by studying a parsing→SRL pipeline, a SRL→parsing pipeline, and a simple joint model by embedding sharing. The integration of syntactic and semantic features gives promising results in a Chinese Semantic Treebank, demonstrating large potentials of neural models for joint parsing and semantic role label...

متن کامل

K-SRL: Instance-based Learning for Semantic Role Labeling

Semantic role labeling (SRL) is the task of identifying and labeling predicate-argument structures in sentences with semantic frame and role labels. A known challenge in SRL is the large number of low-frequency exceptions in training data, which are highly context-specific and difficult to generalize. To overcome this challenge, we propose the use of instance-based learning that performs no exp...

متن کامل

A Shortest-path Method for Arc-factored Semantic Role Labeling

We introduce a Semantic Role Labeling (SRL) parser that finds semantic roles for a predicate together with the syntactic paths linking predicates and arguments. Our main contribution is to formulate SRL in terms of shortest-path inference, on the assumption that the SRL model is restricted to arc-factored features of the syntactic paths behind semantic roles. Overall, our method for SRL is a no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007